The Yeast Ubr1 Ubiquitin Ligase Participates in a Prominent Pathway That Targets Cytosolic Thermosensitive Mutants for Degradation

نویسندگان

  • Farzin Khosrow-Khavar
  • Nancy N. Fang
  • Alex H. M. Ng
  • Jason M. Winget
  • Sophie A. Comyn
  • Thibault Mayor
چکیده

Mutations causing protein misfolding and proteolysis are associated with many genetic diseases. The degradation of these aberrant proteins typically is mediated by protein-quality control pathways that recognize misfolded domains. Several E3 ubiquitin ligases have been shown to target cytosolic misfolded proteins to the proteasome. In this study, we characterized a panel of more than 20 cytosolic thermosensitive mutants from six essential genes in Saccharomyces cerevisiae. These wild-type proteins are stable at restrictive temperature. In contrast, we found that a large portion of the mutants is degraded at nonpermissive temperature in a proteasome-dependent manner. Approximately one-third of the assessed unstable mutants are targeted by the Ubr1 ubiquitin ligase. In two cases, efficient degradation of the thermosensitive mutants is abrogated in the absence of Ubr1 alone, whereas in a third case it is reliant on the dual deletion of Ubr1 and the nuclear E3 ligase San1. We found that the impairment of the degradation of these quality control substrates at the restrictive temperature is associated with the suppression of thermosensitive phenotype. This study confirms that Ubr1 plays an important role in the degradation of cytosolic misfolded proteins and indicates that degradation mediated by protein quality control is a major cause for the conditional lethality of mutated essential genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Type II Hsp40 Sis1 Cooperates with Hsp70 and the E3 Ligase Ubr1 to Promote Degradation of Terminally Misfolded Cytosolic Protein

Mechanisms for cooperation between the cytosolic Hsp70 system and the ubiquitin proteasome system during protein triage are not clear. Herein, we identify new mechanisms for selection of misfolded cytosolic proteins for degradation via defining functional interactions between specific cytosolic Hsp70/Hsp40 pairs and quality control ubiquitin ligases. These studies revolved around the use of S. ...

متن کامل

Previously unknown role for the ubiquitin ligase Ubr1 in endoplasmic reticulum-associated protein degradation.

Quality control and degradation of misfolded proteins are essential processes of all cells. The endoplasmic reticulum (ER) is the entry site of proteins into the secretory pathway in which protein folding occurs and terminally misfolded proteins are recognized and retrotranslocated across the ER membrane into the cytosol. Here, proteins undergo polyubiquitination by one of the membrane-embedded...

متن کامل

Ubr1 and Ubr2 Function in a Quality Control Pathway for Degradation of Unfolded Cytosolic Proteins

Quality control systems facilitate polypeptide folding and degradation to maintain protein homeostasis. Molecular chaperones promote folding, whereas the ubiquitin/proteasome system mediates degradation. We show here that Saccharomyces cerevisiae Ubr1 and Ubr2 ubiquitin ligases promote degradation of unfolded or misfolded cytosolic polypeptides. Ubr1 also catalyzes ubiquitinylation of denatured...

متن کامل

Construction and analysis of mouse strains lacking the ubiquitin ligase UBR1 (E3alpha) of the N-end rule pathway.

The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. In the yeast Saccharomyces cerevisiae, the UBR1-encoded ubiquitin ligase (E3) of the N-end rule pathway mediates the targeting of substrate proteins in part through binding to their destabilizing N-terminal residues. The functions of the yeast N-end rule pathway include fidelity of chromosome se...

متن کامل

Pairs of dipeptides synergistically activate the binding of substrate by ubiquitin ligase through dissociation of its autoinhibitory domain.

Protein degradation by the ubiquitin (Ub) system controls the concentrations of many regulatory proteins. The degradation signals (degrons) of these proteins are recognized by the system's Ub ligases (complexes of E2 and E3 enzymes). Two substrate-binding sites of UBR1, the E3 of the N-end rule pathway in the yeast Saccharomyces cerevisiae, recognize basic (type 1) and bulky hydrophobic (type 2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2012